The post looks at Big Data: A Revolution That Will Transform How We Live, Work, and Think by Kenneth Cukier and Viktor Mayer-Schönberger. I enjoyed the book as it really broke down the business impact of big data without getting in technical details of the underlying technology.
Why take a second look at big data auditing?
Big data and the accompanying analytical models are key a precursor to artificial intelligence. Machine learning algorithms that power the AI bots requires the users to analyse the problem and teach the underlying algorithm.Part 1: Context is King
To make things a bit more digestible, I thought it would be good to divide the post into two parts. The first post is more palatable as I want to explore the second use case in a bit more detail and its relevance to today. The second post will be a bit more controversial as I will take a look at the difficulty of applying fraud or cancer-fighting algorithms in the realm of (external) financial audit.
But let's look at the first issue: how can big data analytics give us better context?
In the original post, I spoke discussed the use case used in Cukier and Mayer-Schönberger's work around Inrix. The book gives the example of how an investment firm is using traffic analysis, from Inrix, to determine the sales that a retailer will make and then buy or sell the stock of the retailer on that information. In a sense, the investment is using vehicular traffic as a proxy for sales. In an audit context, auditors can develop expectations of what sales should be based on the number of vehicles going around stores. For example, if sales are going up, but the number of vehicles are going down then the auditor would need to take a closer look.
What I realized from this example is that what big data can give auditors better context around things and assess reasonability of things. That is as more sensor data and other data are available to auditors to integrate into statistical models, the more they will be able to spot anomalies.
What I realized from this example is that what big data can give auditors better context around things and assess reasonability of things. That is as more sensor data and other data are available to auditors to integrate into statistical models, the more they will be able to spot anomalies.
One of the issues with Barry Minkow's ZZZBest accounting fraud was the lack of context. For more on the fraud, check this video:
I actually studied this case in my auditing class at the University of Waterloo. One of the lessons we were take away from this case was that the auditors didn't know how much a site restoration would cost on average (see the first bullet in this text on page 129). But how would an auditor be able to access such data? Even with the advent of the internet, it is not simply a matter of Googling for the information.
More recently, an accounting professor was found to have generated data fraudulently. The way he got caught was that a statistic he used didn't correspond to reality. Specifically:
"misrepresented the number of U.S.-based offices it had: not 150, as the paper maintained (and as a reader had noticed might be on the high side, triggering an inquiry from the journal)" [Emphasis added]
More recently, an accounting professor was found to have generated data fraudulently. The way he got caught was that a statistic he used didn't correspond to reality. Specifically:
"misrepresented the number of U.S.-based offices it had: not 150, as the paper maintained (and as a reader had noticed might be on the high side, triggering an inquiry from the journal)" [Emphasis added]
Again, the reader had the context to understand what was presented was unreasonable causing the study to unravel and exposing the academic fraud perpetrated by Hunton.
What will it take to make this a reality?
What's missing is a data aggregation tool that can connect to the private, third party, and public data feeds that an auditor can leverage for statistical analysis. Furthermore, for this to be useful to clients and the business community large are visualized depictions that enable the auditor to tell the story in a better way rather than handing over complex spreadsheets.
Of course for auditors to present such materials requires them to have deeper training in data wrangling, statistics and visualization tools and techniques.
In the next post, we will revisit the first use case that I presented in the original post that explored how the New York City was better able to audit illegal conversions through the use of big data analytical techniques. Originally, I had thought this would be a good model to apply in the world of audit. However, I am revisiting this idea.
Author: Malik Datardina, CPA, CA, CISA. Malik works at Auvenir as a GRC Strategist that is working to transform the engagement experience for accounting firms and their clients. The opinions expressed here do not necessarily represent UWCISA, UW, Auvenir (or its affiliates), CPA Canada or anyone else